Location Accuracy Technologies: Today and Tomorrow

March 15th, 2016

Kent Hellebust
Vice President
Comtech TCS
Three 911 Location Challenges

1. Call Routing
2. Enhanced Location (Phase II)
3. Indoor Location

These challenges are related, but distinct
Wireless E9-1-1 Call Baseline

1: Person dials 9-1-1
2: MSC requests routing instructions
3: MSC routes call to nearest PSAP
4: E9-1-1 Center stages enhanced location
5: PSAP queries for enhanced location
6: PSAP dispatches emergency assistance
Call Routing Challenge

‘The address of that tower determines which 9-1-1 center that call goes to. It's not based on the location of the telephone.’

- Cell site plotted
- Cell sector faced
- PSAP boundaries
- Primary PSAP
- Determine route

Routes can change – test them!
Wireless 9-1-1 Call Routing Challenge

1: Person dials 9-1-1
2a: MSC requests routing instructions
3: MSC routes call to designated PSAP

Non-final routes occur on PSAP boundaries and require PSAP call transfers

2b: Call routing based on cell tower location
1: Person dials 9-1-1
2a: MSC requests routing instructions
3: MSC routes call to designated PSAP

Non-final routes occur on PSAP boundaries and require PSAP call transfers

Small cells improve call routing: smaller overlapping boundaries

2b: Call routing based on cell tower location
The Macquarie analysts estimated that there are about 40,000 small cells deployed in the United States today.

FierceWireless 1/13/15

Rethink Wireless, 09/15
Strong Femtocell Growth

- Femtocells for home use
- Support specific users
- Generally located via GPS
- Typically associated with cell tower

Dispatchable location possible
 - Follow VoIP registration process

Jan. 2013
Small Cell Worry: Cloud RAN

Potential Problem: Only macrocell known

Lose benefit for 911?

Small cells added to macrocell
• Tradeoff between speed and accuracy
 – Lower accuracy solutions were fast
 – Higher accuracy solutions were slow

• This was known at the time of the FCC Phase II rules

• Sub-optimal solutions (re-bid) were suggested

• FCC focus has been on accuracy
Wireless 9-1-1 Phase II Challenge

1: Person dials 9-1-1
2: MSC requests routing instructions
3: MSC routes call to nearest PSAP
4: E9-1-1 Center stages enhanced location
5: PSAP queries for enhanced location

Phase II Data Arrives Late

Legend:
Voice
Data

TCS E9-1-1 Center
PDE
ESRK
CRDB
MPC
ALI

Legend:
CRDB – Call Routing Data Base
PDE – Position Determination Entity
MPC – Mobile Positioning Center
ESRK – Emergency Services Routing Key
Initial Bid Timing vs. Location Fix

Washington DC
May, 2013
Single carrier

Initial Bid generally <8 sec
11,585 calls
10,812 bids
6.7% abandoned

...but location fixes can take up to 24 seconds

Phase II Initial Bids: 2588
23.9%
Importance of Location Rebids

- Rebidding often is not done
 - Washington DC: 1.8% (191 of 10,811 calls)
 - CalNENA policy not to re-bid: 2006 thru 2014
 - Dispatch info sometimes overwritten by re-bids

<table>
<thead>
<tr>
<th>Phase</th>
<th>Initial Bid Percentage</th>
<th>After 30 Seconds Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase I</td>
<td>75.4%</td>
<td>11.1%</td>
</tr>
<tr>
<td>Poor Phase II</td>
<td>0.7%</td>
<td>1.7%</td>
</tr>
<tr>
<td>Phase II A-GPS</td>
<td>21.8%</td>
<td>73.2%</td>
</tr>
<tr>
<td>Phase II AFLT</td>
<td>2.1%</td>
<td>13.9%</td>
</tr>
</tbody>
</table>
1. Small cells = Phase I more precise than Phase II
2. Speeding up the location fix:
 National Emergency Address Database (NEAD)

Fast interface (2-4 sec)
NG9-1-1 brings two benefits to improving location

1. Location data is pushed rather than pulled
 - No need for re-bid strategy
 - Location information can be presented as it becomes available

1. Multiple location elements can be sent – courtesy of PIDF-LO
 - A-GPS fix
 - OTDOA fix
 - Street address from indoor location techniques
 - Billing/work addresses

Presence Information Data Format - Location Object
Indoor Location Challenge

• Evidence of a Problem
 – Statistics tell a story
 – Analyzing real-world 9-1-1 data
 – Long-term 9-1-1 data comparison
 – 9-1-1 data trending
 – Comparing urban/suburban to dense urban
We “should” have an Indoor Location challenge

- 40% of US population has “cut the cord”
 - 2013 CDC study (37% of adults; 45% of children)

- 70% of 9-1-1 calls come from wireless
 - 2012 King County, WA statistic
Real-world 9-1-1 Call Analysis

- Actual 911 calls
- Tarrant County
- All carriers
- August, 2013

Color-code X/Y locations (using HUNC)
Brown = Phase I only
Green = meets stricter requirement.
Red = misses looser requirement.
Yellow = between strict/loose

Which are Indoors?
Which are Outdoors?
Tarrant County, TX – August, 2013 data

Uncertainty Tells a Story

» Uncertainty/Accuracy correlates
 - Can draw roadways

» Uncertainty error clusters

Tarrant County, TX – Multiple wireless carriers – August, 2013 data
Location HUNC Getting Worse

3.3%→7.5%
(More calls from indoor locations?)
Problem area seen in 2011

Goodrich Warehouse
Built in 2007

Data Trends Tell a Story
Dense Urban Tells a Story

- Baltimore 9-1-1 calls (Nov, 2014)
- Tarrant County 9-1-1 calls (Aug, 2013)

<table>
<thead>
<tr>
<th></th>
<th>Tarrant County</th>
<th>Baltimore</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUNC <= 50m</td>
<td>80.4%</td>
<td>45.3%</td>
</tr>
<tr>
<td>HUNC 50m<-->150m</td>
<td>12.1%</td>
<td>11.2%</td>
</tr>
<tr>
<td>HUNC > 150m</td>
<td>7.5%</td>
<td>43.5%</td>
</tr>
<tr>
<td>Total</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

HUNC is a distance/range calculated by the Location Engine. Determines the range of location “error” based on Confidence value. Confidence (90%) expresses likelihood to find device within HUNC range.
• Today’s Solutions:
 – Small cells
 – Femtocells
 – Using A-GPS (yes, it can work indoors...depending on conditions)
In the static indoor test, mobile phones and GPS units were placed in very close proximity on top of a regular wooden desk on the second floor of a two-story residential structure. The second floor of the structure consisted of a wood frame with cement stucco while the roof consisted of a wood frame with asphalt shingles. While GPS signal reception within this structure is possible (even without using a high-sensitivity chipset), the reception was severely affected by the building materials, resulting in lower expected accuracy.
More Satellites = Better Indoors?

- **GLONASS** - Deployed now
 - Russian ownership
 - Full global coverage
 - 21+3 satellites
 - 4-7m horizontal; 10-15m vertical precision

- **Galileo** – Deploying
 - European Union ownership
 - Full global coverage
 - 4 satellites now; 27+3 by 2019
 - 4m horizontal; 8m vertical precision (paid)

- **Beidou** – Deploying (COMPASS)
 - Chinese ownership
 - Regional, expanding to global coverage
 - 30+5 satellites
 - 25m horizontal; 30m vertical precision

Combining satellite systems is expected to double precision: better, faster fixes, potentially reaching deeper indoors.
A-GPS is Improving: GLONASS

- GLONASS is becoming prevalent in smartphones
 - GLONASS supplements GPS in most devices
 - Device makers and chipset companies support multi-GNSS constellations

- Five studies showed favorable results with the addition of GLONASS and GPS
 - Addition of GLONASS data with GPS improves the number of satellites visible
 - Especially true for urban canyons
 - Location accuracy improved in navigation tests in city environments
 - Tests showed that time-to-fix was improved
The use of multi GNSS receivers in smartphones is becoming prevalent (Source: European GNSS Agency, 3/15)

- More than 60% of all smartphone chipsets support at least two constellations
- GLONASS is supported in greater than 55% of smartphones

GLONASS constellation completed in 2011
“GPS + GLONASS: Using the Best of Both Worlds”

- Tests in Los Angeles, London and Johannesburg of adding GLONASS to GPS
- Combination of GPS and GLONASS improved positioning tremendously
 - Especially in urban canyons with skyscrapers
- With the addition of GLONASS:
 - Tracked satellites never dropped below six
 - Problem of lost satellite coverage in urban canyons is dramatically reduced
- Time-to-fix also improved with the combined GLONASS and GPS

The picture shows a single test track in Los Angeles.

There were several instances where GPS was not able to determine a position.

With GPS + GLONASS, this did not happen as the receiver never lost signal.

There is also a huge difference in the accuracy of ground track.
“Consumer GPS/GLONASS: Accuracy and Availability Trials of a One-Chip Receiver in Obstructed Environments”
STMicroelectronics, 12/11

- Tests in London, Tokyo and Texas
 - Determine impact of GLONASS+GPS satellites in urban areas
- Increase in satellites seen for a combined GPS + GLONASS
- An accuracy improvement of 2.5X

Good “yield” improvement

<table>
<thead>
<tr>
<th>Constellation</th>
<th>GPS</th>
<th>GPS + Glonass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visible Satellite*</td>
<td>4.4</td>
<td>7.8</td>
</tr>
<tr>
<td>No Fix</td>
<td>380 minutes</td>
<td>Never</td>
</tr>
<tr>
<td>HDOP*</td>
<td>5.3</td>
<td>2.1</td>
</tr>
<tr>
<td>Error*</td>
<td>x meter</td>
<td>(x* 0.4) meter</td>
</tr>
</tbody>
</table>

HDOP = Horizontal Dilution of Precision
It is a measure of error:
reduction=improved accuracy

2.5x accuracy improvement
Solution: Wi-Fi Indoor Location

• Smartphone locates nearest Wi-Fi Access Point

 Smartphone detects Wi-Fi AP
 • AP presents its MAC ID
 • Smartphone measure signal strength
 • Smartphone presents info to location server

• Nearest Wi-Fi Access Point locates nearby smartphone

 Wi-Fi AP detects smartphone
 • Smartphone presents its MAC ID
 • AP measure signal strength
 • Multiple APs can triangulate the smartphone
 • AP system presents info to location server

Enterprise Wi-Fi Location
There are over 126M WiFi Access Points in the US from identifiable residential and enterprise providers. Approximately 86M are deployed in residences and 40M in enterprises/public access areas.

Wi-Fi Availability in the U.S.

Source: company information and ABI Research, 2014
Comtech TCS
Wi-Fi Access Point Database

149M Access Points
Wi-Fi coverage exists and it maps to population
Enterprise Indoor Location – Washington DC

Indoor Location

Indoor Map

SDWA Operator Control Panel

Enterprise Wi-Fi AP Controllers

Dispatchable Location

Indoor Location

Locate9-1-1

SDWA Operator Control Panel

Time zone: Pacific Time (US & Canada)

Unassigned Calls

Home at this time

My Active Calls

(925) 767-8329 04:56

Other Active Calls

Home at this time

Recent Calls.

©2015 TeleCommunication Systems, Inc. (TCS). All rights reserved.

March 15-16, 2016 • Kansas City, MO
Satellite Overlay for Campus View
Expanded Indoor Location View

Indoor Map (Expanded View)

Dispatchable Location

Indoor map: 801 MT VERNON PL NW, APCO Conf, Washington DC
Multi-faceted Location: Seattle
National Emergency Address Database (NEAD)

Pre-Standards ”NEAD” Location (Wi-Fi APs)

Dispatchable Location (Address, Floor, Additional Info)

Wi-Fi Access Points

NEAD
Comtech TCS Global Wi-Fi Service (Geodetic Location)

Global Wi-Fi Service (Enhanced Location)

Geodetic Location
Other Data Sources

- Bluetooth Data from Mobile Device
- Data from Caller-supplied
- Billing Data

Other Data Sources (Enhanced Location)
What Can a PSAP Manager Do?

• To help with call routing:
 – Pay attention to boundaries
 – Track call transfers – if too many, change boundaries

• To help with caller location:
 – Determine a rebid policy/strategy for your center
 – Get data; look for error clusters; encourage small cell use

• To help with Indoor Location:
 – Help get addresses in the NEAD (National Emergency Address Database)

• Get GIS maps for neighboring counties!
“In an era when your mobile phone can tell Facebook, Uber or even video games where you're located – with amazing accuracy – 911 operators are often left in the dark.”

USA Today; 02/22/15
Commercial Apps Have Problems Too

• 911 location data is tested more rigorously:
 – Outdoor location testing regularly reported to FCC
 – 240M calls annually receive close scrutiny from public safety
 – ‘Always On’
• Commercial location not independently tested/validated
 – Varied handset capabilities, varied performance
 – A-GPS (lat/lon) location was within 50m 91% of time
 – Recent test: location was outside Ritz-Carlton – in park across Ellis Street
 – Horizontal uncertainty put caller within 3 buildings
 – Confidence said 95%:
 • Ground truth testing revealed closer to 61.7%
 – “Uber parks down the block from my apartment…”
Kent Hellebust
Vice President Safety & Security Technologies
206.792.2446 (o) │ 425.922.3054 (m)

2401 Elliott Avenue
Seattle, WA 98121
Kent.Hellebust@comtechtel.com
@telecomsys
www.telecomsys.com