

Leaders in Public Safety Communications®

Location Accuracy Technologies: Today and Tomorrow *March 15th, 2016*

Kent Hellebust Vice President Comtech TCS

Three 911 Location Challenges

- 1. Call Routing
- 2. Enhanced Location (Phase II)
- 3. Indoor Location

These challenges are related, but distinct

Wireless E9-1-1 Call Baseline

- 1: Person dials 9-1-1
- 2: MSC requests routing instructions
- 3: MSC routes call to nearest PSAP

- 4: E9-1-1 Center stages enhanced location
- 5: PSAP queries for enhanced location
- 6: PSAP dispatches emergency assistance

Call Routing Challenge

'The address of that tower determines which 9-1-1 center that call goes to. It's not based on the location of the telephone.'

- Cell site plotted
- · Cell sector faced
- PSAP boundaries
- Primary PSAP
- Determine route

Routes can change – test them!

Wireless 9-1-1 Call Routing Challenge

1: Person dials 9-1-1

2a: MSC requests routing instructions

3: MSC routes call to designated PSAP

Non-final routes occur on PSAP boundaries and require PSAP call transfers

Wireless 9-1-1 Call Routing Improved

1: Person dials 9-1-1

2a: MSC requests routing instructions

3: MSC routes call to designated PSAP

Non-final routes occur on PSAP boundaries and require PSAP call transfers

Strong Small Cell Growth

[T]he Macquarie analysts estimated that there are about 40,000 small cells deployed in the United States today.

FierceWireless 1/13/15

Small Cell Forum 12/14

Rethink Wireless, 09/15

Strong Femtocell Growth

- Femtocells for home use
- Support specific users
- Generally located via GPS
- Typically associated with cell tower

Dispatchable location possible

Follow VoIP registration process

Small Cell Worry: Cloud RAN

Comparison of C-RAN Architectures

Via: Metrocells.blogspot.com

Potential
Problem:
Only macrocell
known

Lose benefit for 911?

Enhanced Location Challenge for Wireless 9-1-1 Calls

- Tradeoff between speed and accuracy
 - Lower accuracy solutions were fast
 - Higher accuracy solutions were slow
- This was known at the time of the FCC Phase II rules
- Sub-optimal solutions (re-bid) were suggested
- FCC focus has been on accuracy

Wireless 9-1-1 Phase II Challenge

- 1: Person dials 9-1-1
- 2: MSC requests routing instructions
- 3: MSC routes call to nearest PSAP

- 4: E9-1-1 Center stages enhanced location
- 5: PSAP queries for enhanced location

Initial Bid Timing vs. Location Fix

Washington DC May, 2013 Single carrier

11,585 calls 10,812 bids 6.7% abandoned

Initial Bid generally <8 sec

...but location fixes can take up to 24 seconds

Phase II Initial Bids: 2588 23.9%

Importance of Location Rebids

- Rebidding often is not done
 - Washington DC: 1.8% (191 of 10,811 calls)
 - CalNENA policy not to re-bid: 2006 thru 2014
 - Dispatch info sometimes overwritten by re-bids

On initial bid

75.4% Phase I
0.7% Poor Phase II
21.8% Phase II A-GPS
2.1% Phase II AFLT

After 30 seconds:

10,794 of 10,811 calls = 99.8%

11.1% Phase I 1.7% Poor Phase II 73.2% Phase II A-GPS 13.9% Phase II AFLT } 87.1%

Improving Enhanced Location Speed

- 1. Small cells = Phase I more precise than Phase II
- Speeding up the location fix: National Emergency Address Database (NEAD)

NG9-1-1: Push Rather Than Pull

NG9-1-1 brings two benefits to improving location

- 1. Location data is pushed rather than pulled
 - No need for re-bid strategy
 - Location information can be presented as it becomes available
- Multiple location elements can be sent courtesy of PIDF-LO
 - A-GPS fix
 - OTDOA fix
 - Street address from indoor location techniques
 - Billing/work addresses

Presence Information Data Format -Location Object

Indoor Location Challenge

- Evidence of a Problem
 - Statistics tell a story
 - Analyzing real-world 9-1-1 data
 - Long-term 9-1-1 data comparison
 - 9-1-1 data trending
 - Comparing urban/suburban to dense urban

Statistics Tell a Story

We "should" have an Indoor Location challenge

- 40% of US population has "cut the cord"
 - 2013 CDC study (37% of adults; 45% of children)
- 70% of 9-1-1 calls come from wireless
 - 2012 King County, WA statistic

Real-world 9-1-1 Call Analysis

- » Actual 911 calls
- » Tarrant County
- » All carriers
- » August, 2013

Color-code X/Y locations (using HUNC)

Brown = Phase I only

Green = meets stricter requirement.

Red = misses looser requirement.

Yellow = between strict/loose

Which are Indoors? Which are Outdoors?

Uncertainty Tells a Story

Location HUNC Getting Worse

3.3% exceeded Phase II upper bound (red)

7.5% exceeded Phase II upper bound (red)

 $3.3\% \rightarrow 7.5\%$

(More calls from indoor locations?)

The Maps Tell a Story

Tarrant County, TX 9-1-1 Calls – August, 2013

Data Trends Tell a Story

Nonexistent in 2007

Improved in 2012

2011

Major problem area in 2011

Greatly improved in 2013

Problem area seen in 2011

Goodrich Warehouse Built in 2007

Dense Urban Tells a Story

- Baltimore 9-1-1 calls (Nov, 2014)
- Tarrant County 9-1-1 calls (Aug, 2013)

	Tarrant County	Baltimore
HUNC <= 50m	80.4%	45.3%
HUNC 50m<>150m	12.1%	11.2%
HUNC > 150m	7.5%	43.5%
Total	100.0%	100.0%

HUNC is a distance/range calculated by the Location Engine Determines the range of location "error" based on Confidence value Confidence (90%) expresses likelihood to find device within HUNC range

Solutions in Progress

A-GPS and Indoors

Legend

- True Location
- Motorola
- Sany

Royal Institute of Navigation The Journal of Navigation July, 2011 Vol. 64 No. 3 pp. 381-399

In the **static indoor test**, mobile phones and GPS units were placed in very close proximity on top of a regular wooden desk on the **second floor of a two-story residential structure**. The second floor of the structure consisted of a **wood frame with cement stucc**o while the **roof consisted of a wood frame with asphalt shingles**. While GPS signal reception within this structure is possible (even without using a high-sensitivity chipset), the reception was severely affected by the building materials, resulting in lower expected accuracy.

More Satellites = Better Indoors?

- GLONASS Deployed now
 - Russian ownership
 - Full global coverage
 - 21+3 satellites
 - 4-7m horizontal; 10-15m vertical precision
- Galileo Deploying
 - European Union ownership
 - Full global coverage
 - 4 satellites now; 27+3 by 2019
 - 4m horizontal; 8m vertical precision (paid)
- Beidou Deploying (COMPASS)
 - Chinese ownership
 - Regional, expanding to global coverage
 - 30+5 satellites
 - 25m horizontal; 30m vertical precision

Combining satellite systems is expected to double precision: better, faster fixes, potentially reaching deeper indoors

A-GPS is Improving: GLONASS

- GLONASS is becoming prevalent in smartphones
 - ✓ GLONASS supplements GPS in most devices
 - ✓ Device makers and chipset companies support multi-GNSS constellations
- Five studies showed favorable results with the addition of GLONASS and GPS
 - ✓ Addition of GLONASS data with GPS improves the number of satellites visible
 - Especially true for urban canyons
 - ✓ Location accuracy improved in navigation tests in city environments
 - ✓ Tests showed that time-to-fix was improved

GNSS Support in Smartphones

- The use of multi GNSS receivers in smartphones is becoming prevalent (Source: European GNSS Agency, 3/15)
 - ✓ More than 60% of all smartphone chipsets support at least two constellations
 - ✓ GLONASS is supported in greater than 55% of smartphones.
- GLONASS constellation completed in 2011

GPS + GLONASS:

Improves Positioning "Tremendously"

"GPS + GLONASS: Using the Best of Both Worlds"

Telit White Paper, 2012

- Tests in Los Angeles, London and Johannesburg of adding GLONASS to GPS
- Combination of GPS and GLONASS improved positioning tremendously
 - ✓ Especially in urban canyons with skyscrapers
- With the addition of GLONASS:
 - ✓ Tracked satellites never dropped below six
 - Problem of lost satellite coverage in urban canyons is dramatically reduced
- Time-to-fix also improved with the combined GLONASS and GPS

Picture 2:

Tracked way in Los Angeles. Green shows the route which was driven with GPS & GLONASS receiver, red the same route with a standard GPS-only receiver.

The picture shows a single test track in Los Angeles.

There were several instances where GPS was not able to determine a position.

With GPS + GLONASS, this did not happen as the receiver never lost signal.

There is also a huge difference in the accuracy of ground track. 30

Consumer GPS/GLONASS: Accuracy and Availability

"Consumer GPS/GLONASS: Accuracy and Availability Trials of a One-Chip Receiver in Obstructed Environments" STMicroelectronics, 12/11

- Tests in London, Tokyo and Texas
 - ✓ Determine impact of GLONASS+GPS satellites in urban areas
- Increase in satellites seen for a combined GPS + GLONASS
- An accuracy improvement of 2.5X

Solution: Wi-Fi Indoor Location

Smartphone locates nearest Wi-Fi Access Point

Smartphone detects Wi-Fi AP

- AP presents its MAC ID
- Smartphone measure signal strength
- Smartphone presents info to location server

Nearest Wi-Fi Access Point locates nearby smartphone

Wi-Fi AP detects smartphone

- Smartphone presents its MAC ID
- AP measure signal strength
- Multiple APs can triangulate the smartphone
- AP system presents info to location server

Enterprise Wi-Fi Location

Wi-Fi Availability in the U.S.

There are over 126M WiFi Access Points in the US from identifiable residential and enterprise providers. Approximately 86M are deployed in residences and 40M in enterprises/public

Wi-Fi Access Points by Provider, 2014

Comtech TCS Wi-Fi Access Point Database

149M Access Points

Wi-Fi coverage exists and it maps to population

Enterprise Indoor Location – Washington DC

Satellite Overlay for Campus View

Expanded Indoor Location View

Multi-faceted Location: Seattle

National Emergency Address Database (NEAD)

Comtech TCS Global Wi-Fi Service Emerging Technology Forum (Geodetic Location) (Geodetic Location)

Other Data Sources

What Can a PSAP Manager Do?

- To help with call routing:
 - Pay attention to boundaries
 - Track call transfers if too many, change boundaries
- To help with caller location:
 - Determine a rebid policy/strategy for your center
 - Get data; look for error clusters; encourage small cell use
- To help with Indoor Location:
 - Help get addresses in the NEAD (National Emergency Address Database)
- Get GIS maps for neighboring counties!

"They Can Send a Man to the Moon"

"In an era when your mobile phone can tell Facebook, Uber or even video games where you're located – with amazing accuracy – 911 operators are often left in the dark."

USA Today; 02/22/15

Commercial Apps Have Problems Too

- 911 location data is tested more rigorously:
 - Outdoor location testing regularly reported to FCC
 - 240M calls annually receive close scrutiny from public safety
 - 'Always On"
- Commercial location not independently tested/validated
 - Varied handset capabilities, varied performance
 - A-GPS (lat/lon) location was within 50m 91% of time
 - Recent test: location was outside Ritz-Carlton in park across Ellis Street
 - Horizontal uncertainty put caller within 3 buildings
 - Confidence said 95%:
 - Ground truth testing revealed closer to 61.7%
 - "Uber parks down the block from my apartment..."

Kent Hellebust

9

Vice President Safety & Security Technologies 206.792.2446 (o) | 425.922.3054 (m)

Kent.Hellebust@comtechtel.com

@telecomsys

www.telecomsys.com