

DoD applications of LTE: Lessons Learned for Public Safety

March 15-16, 2016 • Kansas City, MO

Agenda DoD Tactical Wireless Programs

- Technology Development Areas
 - Deployables
 - Mobility
 - Security
 - Training Ranges (Internet of Things)
- Requirement themes
- Applicability to Public Safety

WIN-T4-Tier Architecture and Connectivity -Long Term

WIN-T Platforms - i.e. Deployable Solutions

TCN & VWP OTM

March 15-16, 2016 · Kansas City, MO

WIN-T Inc 2 -Enables Commercial Users Devices

March 15-16, 2016 • Kansas City, MO

WIN-T SUMMARY

- WIN-T works Inc 1 is 100% fielded and deployed since 2005
- Inc 2 authorized for Full Rate Production in June 2015
- Inc 2 fielding since 2012
- Inc 3 serves as the key technology development engine, including Network Management

Tactical, ad-hoc, self-forming, self-healing networks behave very differently than static networks – Inc 2 is a game changer

© 2011 General Dynamics. All rights reserved.

Fort Dix CRADA Network Integration - Real World Testing

Comparing Technology Forum AWIN Concept: LTE + Fortress Mesh Internet of Things Model

Tactical Technology Themes

Developed LTE Tactical Themes

- LTE Components
 - Distributed Core Network, VCN Geographic Redundancy and S1-Flex
 - Frequency Agility (400MHz 6 GHz), interchangeable RF heads, Dual and Quad Band ENB
 - Decreased SWaP+C with every release
 - 4Rx Capability to Improve coverage and throughput
 - Enhanced Maximum Throughput
 - Developed Radio-Aware-Routing functionality for interoperability with multi-radio networks (WIN-T)
- Mobility (Distributed, Hierarchical, Geographical Network Architecture Roaming)
 - Self-Organizing Networks (SON)
 - MOCN Capability (multi-operator core network) (WIN-T Requirement)
- Connectivity
 - Support 256 UEs (WIN-T Requirement)
 - Secure QoS Capability (outside of tunnel)
 - WIN-T CSfC Interoperability Verified (MACE and WIN-T Suites)
- Improved (simplified) Network Management GUI

LTE Virtual Core Network (VCN)

- Designed for deployability and small fixed networks; very small and light for vehicle and manpack integration
 - Supports all GD eNodeB options
 - VCN (1u COTS server, supports up to 30 eNodeBs, 2,000 users)
 - can be deployed as eNodeB only with S1 backhaul to fixed core
- Supports single or multi-site systems

- Network of networks
 - > Individual systems can be connected together
 - > Range further extendable via mesh Wi-Fi connection
- Remote or local HSS
- Just add power and internet connection
- Available as software-only and on qualified hardware platforms

LTE and Mesh Wireless Deployable Networks

- Support moderate-sized teams operating in larger area of responsibility for sustained periods (days)
- Support for planned exercises, large extended crisis scenes, wildfire base camps
- Supports and bridges a variety of modes: LTE, LMR, satellite communications

General Dynamics Small-Cell Man Portable eNodeB and Laptop hosted VCN

General Dynamics eNodeBs Mounted on PSCR's "Cell on Wheels"

Dual Carrier 700 MHz/2.5 GHz "Cell on Wheels"

Broadband Cell on Wheels Spec

- 700MHz LTE (BC14) other bands available
- 1 or 3 sector eNodeB architecture
- VCN with Evolved packet core
- VCN redundancy (Distributed Networking)
- WiFi and Mesh radio bridge extensions
- On Board switch/router and App Server
- 120' 106', 60', or 30' mast options
- IDU for IP over SATCOM
- Diesel power, light tow
- Multiple "add-on" options
 - Surveillance, SATCOM, Security, Renewable Energy, microwave

106 ft "Tower on Wheels"

March 15-16, 2016 · Kansas City, MO

Architecture of Deployable Solutions

Emerging Technology Forum

- One size does not fit all

Aerial Payloads – Enable LTE coverage over a wide area of responsibility, with relay/backhaul to existing FirstNet infrastructure.

Large Deployable Variations

Cell on Light Truck (CoLT)

Double/Single Axle

Rapid Deployable Mast

Tower on Wheels (ToW)

March 15-16, 2016 · Kansas City, MO

GENERAL DYNAMICS PROPRIETARY

Secure QoS Architecture

• Secure QoS architecture defined in order to facilitate provision of sophisticated QoS mechanisms without cross security domain interfaces

Secure QoS Capabilities

MME 51-c-56a HSS PDN 511 eNodeB SGW CSFC VPN server PGW CSfC Double Tunnel Default EPC bearer Security domain boundary QoS capability maintained with all traffic in Dedicated Non-GBR EPS bearer Dedicated Non-GBR EPS bearer end-to-end CSFc tunnel(s) Dedicated Non-GBR EPS bearer QoS mapping based upon DSCP tags Dedicated Non-GBR EPS bearer Example QoS Mapping Dedicated GBR EPS bearer (triggered)

Multiple Dedicated bearers

- Non-GBR bearers (created at call setup)
 - Up to 4 bearers
 - Configurable QCI to match service
- GBR bearer (triggered by traffic flow)
 - Triggered by traffic flow matching filter parameters
 - ARP priority and precedence mechanism
 - Rate implied by trigger (e.g. optimized for voice codec)
 - Inactivity timer triggered tear down

Traffic Class	Example Traffic	Precedence within Traffic Class	Binary	Decimal	IETF Label	QCI	Implied QCI priority	ARP priority	Pre- empt cap	Pre- empt xul	GBR rate	
Network Control	Critical Network Control		111000	56		5	1	15	Y	Y	Non-GBR	
Higl Tel Cor	High Priority Telephony	Flash	101010	42		1	2	1	Y	N		
		Immediate	Note 1					2	Y	Y		
	Combat Net	High	Note 1			1	2	3	×	N		
		Medium	Note 1					4	×	N		
	voice	Low	Note 1					5	Y	N	Voice codec	
Inelastic											rate.	

Possible DSCP Value

Public Safety Applications And Adaptations

17

True Global Initiative

Emerging Technology Forum

New York City WIN

MAGNET – Multi-Agency Govt Network

ADCOM911 Adams County, CO, U.S LTE Equipment

QinetiQ

Qinetig and DSTL for UK MOD

LTE system for **Deployable System Experiments**

Armasuisse for Swiss Army

LTE system for **Deployable System Experiments**

PSCR Testing at NIST For FirstNET

LTE Performance and Interoperability

UAE Signal Corps trial for national network

> LTE for fixed and deployable infrastructure

First LTE PSBN Range of devices

Trialed deployables

Indian Army and Singapore Armed Forces

LTE for deployables

Public Safetv Canada CIRTEC

PSCR Equiv.

German Army

LTE for fixed and mobile ad-hoc networks

March 15-16, 2016 · Kansas City, MO

Public Safety Deployable Solutions - Vehicular Network System

Broadband Mobile Command Post

Emerging Technology Forum

ehicle Configured with a 513, 2013 Kansas City, MO

Scenario: Next Generation Border Security

Emerging Technology Forum

Next Generation Border Security

- Enabling Technologies

In Summary

- US DoD Tactical Networks are heavily invested in broadband and mobility
- Public Safety can learn from "early adopter" Defense programs and Development
- Military Technology will find it's way into Public Safety Solutions
 - Deployables
 - Mobility
 - Security
 - QoS
 - Applications

Mark Raczynski, <u>mark.raczynski@gd-ms.com</u> http://gdc4spublicsafety.com/